-
High Voltage Ceramic Capacitor
-
High Voltage Doorknob Capacitors
-
High Voltage Film Capacitor
-
Live Line Capacitors
-
Surge Protective Device
-
High Voltage Vacuum Circuit Breaker
-
Switchgear Temperature Sensor
-
Voltage Instrument Transformers
-
Capacitive Voltage Detector
-
Capacitive Voltage Divider
-
Capacitive Insulator
-
MOV Metal Oxide Varistor
-
PTC NTC Thermistor
-
High Voltage Resistors
-
Richard“XIWUER is very innovative. They have provided excellent, intuitive service, looking ahead into the future as to what we might need.” -
Mike"XIWUER's dedication to designing different specifications to meet our stringent processing requirements is a testament to our years of research and development." -
Marry"XIWUER has impressive research capabilities and demonstrates good prototyping capabilities and high product quality."
Extreme Stability, Microscopic Insight: How High-Voltage Doorknob Capacitors Become the Stabilizing Force of MRI Magnet Power
| Place of Origin | XIAN, CHINA |
|---|---|
| Brand Name | XIWUER |
| Certification | ISO9001,ISO14001,ISO45001 |
| Document | High Voltage Ceramic Capaci...25.pdf |
| Minimum Order Quantity | 1pcs |
| Price | Negotiable |
| Packaging Details | Carton |
| Delivery Time | 5-7days |
| Payment Terms | L/C,T/T |
| Supply Ability | 4,000,000 pcs a year |
Contact me for free samples and coupons.
Whatsapp:0086 18588475571
Wechat: 0086 18588475571
Skype: sales10@aixton.com
If you have any concern, we provide 24-hour online help.
x| Dissipation | ≦0.0040 | Withstanding Voltage | 1.5Ur● 1min |
|---|---|---|---|
| Insulation Resistance | ≧1.0×105MΩ | ||
| Highlight | high voltage doorknob capacitors for MRI,stabilizing doorknob capacitors with high voltage,MRI magnet power doorknob capacitors |
||
Extreme Stability, Microscopic Insight: How High-Voltage Doorknob Capacitors Become the Stabilizing Force of MRI Magnet Power
Drawing:![]()
Parameters:
| No. | Specification | Dissipation | Withstanding voltage | Insulation resistance | Dimension(mm) | ||||
| 1 | 20kV-2000pF |
≦0.0040 |
1.5Ur● 1min |
≧1.0×105MΩ |
D | H | L | D | M |
| 2 | 20kV-10000pF | 45 | 19 | 23 | 12 | 5 | |||
| 3 | 20kV-18000pF | 65 | 15 | 19 | 12 | 5 | |||
| 4 | 30kV-1000pF | 80 | 17 | 25 | 12 | 5 | |||
| 5 | 30kV-2700pF | 45 | 24 | 32 | 12 | 4 | |||
| 6 | 30kV-12000pF | 60 | 20 | 28 | 12 | 4 | |||
| 7 | 40kV-150pF | 20 | 33 | 41 | 8 | 4 | |||
| 8 | 40kV-500pF | 28 | 33 | 41 | 8 | 4 | |||
| 9 | 40kV-7500pF | 80 | 24 | 29 | 12 | 6 | |||
| 10 | 40kV-10000pF | 80 | 22 | 26 | 16 | 5 | |||
| 11 | 50kV-1000pF | 50 | 30 | 34 | 12 | 4 | |||
| 12 | 50kV-1000pF | 32 | 27 | 31 | 16 | 5 | |||
| 13 | 50kV-5600pF | 80 | 31 | 35 | 16 | 5 | |||
| 14 | 60kV-1500pF | 50 | 31 | 34 | 12 | 5 | |||
| 15 | 60kV-3000pF | 65 | 32 | 35 | 16 | 5 | |||
| 16 | 100kV-500pF | 50 | 54 | 58 | 12 | 5 | |||
| 17 | 100kV-2000pF | 51 | 32 | 35 | 16 | 5 | |||
| 18 | Insulator type 100kV-1500pF | 68 | 36 | 40 | 16 | 5 | |||
| 19 | 150kV-820pF | 65 | 95 | 100 | 12 | 5 | |||
| 20 | 200kV-600pF | 50 | 90 | 94 | 16 | 5 | |||
The core performance of a nuclear magnetic resonance (NMR) instrument lies in its ability to generate and maintain a highly uniform and stable static main magnetic field. Whether based on superconducting magnets or electromagnets, the excitation power supply and field compensation coils require extremely stable, pure, and high-voltage DC power. Any slight voltage fluctuation or ripple noise can cause magnetic field drift, leading to spectral line broadening, reduced resolution, and even the inability to resolve fine molecular structures. High-voltage doorknob capacitors are the cornerstone components that ensure the extremely low noise and long-term stability of the high-voltage power supply systems of these precision instruments.
NMR instruments place stringent demands on high-voltage power supplies:
NMR instruments, particularly high-field systems, pose significant challenges to their magnet power supply systems:
Unparalleled stability: Voltage and current fluctuations in the power supply output must be kept to extremely low levels (typically requiring better than 10⁻⁶). Even small fluctuations can directly cause variations in the main magnetic field, manifesting as peak broadening or frequency shifts in the NMR spectrum, severely impacting the accuracy of both quantitative and qualitative analysis.
The Core Function of Doorknob Capacitors: High-Voltage Filtering and Energy Storage:
In the DC-DC converter and output stage of an MRI magnet power supply, high-voltage doorknob capacitors play two crucial roles:
DC link support and filtering: They are the core of π-type or LC filter networks. Their excellent high-frequency characteristics (low equivalent series resistance (ESR) and low equivalent series inductance (ESL)) effectively filter out high-frequency ripple generated by switching power supplies, outputting a smooth, water-like high-voltage DC voltage, providing "clean" energy for the magnet system.
Transient energy buffering: During transient changes in system load, capacitors act as miniature local energy reservoirs, instantly sourcing or absorbing charge, effectively suppressing minor dips or overshoots in the bus voltage and maintaining instantaneous stability of the magnet current.

