-
High Voltage Ceramic Capacitor
-
High Voltage Doorknob Capacitors
-
High Voltage Film Capacitor
-
Live Line Capacitors
-
Surge Protective Device
-
High Voltage Vacuum Circuit Breaker
-
Switchgear Temperature Sensor
-
Voltage Instrument Transformers
-
Capacitive Voltage Detector
-
Capacitive Voltage Divider
-
Capacitive Insulator
-
MOV Metal Oxide Varistor
-
PTC NTC Thermistor
-
High Voltage Resistors
-
Richard“XIWUER is very innovative. They have provided excellent, intuitive service, looking ahead into the future as to what we might need.” -
Mike"XIWUER's dedication to designing different specifications to meet our stringent processing requirements is a testament to our years of research and development." -
Marry"XIWUER has impressive research capabilities and demonstrates good prototyping capabilities and high product quality."
The Invisible Pillar of Power Line Carrier Communication: Redefining High-Voltage Coupling System Architecture Design
Contact me for free samples and coupons.
Whatsapp:0086 18588475571
Wechat: 0086 18588475571
Skype: sales10@aixton.com
If you have any concern, we provide 24-hour online help.
x| Dissipation | ≦0.0040 | Withstanding Voltage | 1.5Ur● 1min |
|---|---|---|---|
| Insulation Resistance | ≧1.0×105MΩ |
The Invisible Pillar of Power Line Carrier Communication: Redefining High-Voltage Coupling System Architecture Design
Drawing:![]()
Parameters:
| No. | Specification | Dissipation | Withstanding voltage | Insulation resistance | Dimension(mm) | ||||
| 1 | 20kV-2000pF |
≦0.0040 |
1.5Ur● 1min |
≧1.0×105MΩ |
D | H | L | D | M |
| 2 | 20kV-10000pF | 45 | 19 | 23 | 12 | 5 | |||
| 3 | 20kV-18000pF | 65 | 15 | 19 | 12 | 5 | |||
| 4 | 30kV-1000pF | 80 | 17 | 25 | 12 | 5 | |||
| 5 | 30kV-2700pF | 45 | 24 | 32 | 12 | 4 | |||
| 6 | 30kV-12000pF | 60 | 20 | 28 | 12 | 4 | |||
| 7 | 40kV-150pF | 20 | 33 | 41 | 8 | 4 | |||
| 8 | 40kV-500pF | 28 | 33 | 41 | 8 | 4 | |||
| 9 | 40kV-7500pF | 80 | 24 | 29 | 12 | 6 | |||
| 10 | 40kV-10000pF | 80 | 22 | 26 | 16 | 5 | |||
| 11 | 50kV-1000pF | 50 | 30 | 34 | 12 | 4 | |||
| 12 | 50kV-1000pF | 32 | 27 | 31 | 16 | 5 | |||
| 13 | 50kV-5600pF | 80 | 31 | 35 | 16 | 5 | |||
| 14 | 60kV-1500pF | 50 | 31 | 34 | 12 | 5 | |||
| 15 | 60kV-3000pF | 65 | 32 | 35 | 16 | 5 | |||
| 16 | 100kV-500pF | 50 | 54 | 58 | 12 | 5 | |||
| 17 | 100kV-2000pF | 51 | 32 | 35 | 16 | 5 | |||
| 18 | Insulator type 100kV-1500pF | 68 | 36 | 40 | 16 | 5 | |||
| 19 | 150kV-820pF | 65 | 95 | 100 | 12 | 5 | |||
| 20 | 200kV-600pF | 50 | 90 | 94 | 16 | ||||
The Invisible Pillar of Power Line Carrier Communication: Redefining High-Voltage Coupling System Architecture Design
In power line carrier communication system architectures, high-voltage doorknob capacitors are far more than simple passive components; they are crucial to system performance. Traditional design approaches that treat capacitors as standalone components are outdated. Our high-voltage doorknob capacitors, through system-level optimization, redefine the performance boundaries of coupling units.
Modern PLC systems face unprecedented challenges: increased interference caused by spectrum congestion, stringent requirements for real-time data transmission in smart grids, and a deteriorating noise environment brought on by the integration of new energy sources. Our high-voltage doorknob capacitors utilize multilayer composite dielectric technology to achieve precise impedance characteristics in specific frequency bands (such as CENELEC A/B bands or FCC bands), effectively suppressing out-of-band interference. Our patented electric field balancing design addresses the partial discharge problem of traditional capacitors under steep pulses, enabling the system to maintain excellent signal-to-noise ratio in complex power noise environments.
We provide more than just capacitors; we provide complete coupling system solutions. Through electromagnetic-thermal multiphysics co-simulation, we optimize the matching characteristics of the capacitors and the coupled filters, reducing impedance mismatch losses in traditional designs by over 60%. The innovative distributed heat dissipation structure reduces the product's temperature rise by 25°C when running at full load compared to traditional designs, ensuring the long-term stability of the system in high-temperature environments.

